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The detection of rainfall remains a challenge for the monitoring of precipitation from
space. A methodology is presented to identify rain events from spaceborne passive
microwave data using neural networks. We focus on BRAIN, the algorithm that
provides instantaneous quantitative precipitation estimates at the surface, based
on the MADRAS radiometer onboard the Megha-Tropiques satellite. A version
of BRAIN using data from the Tropical Rainfall Measuring Mission (TRMM)
Microwave Imager (TMI) has been used to compare several multilayer perceptrons
(MLP) trained on different combinations of TMI brightness temperatures with
the conventional GSCAT-2 algorithm approach used for rainfall detection. These
classifiers were compared at a global scale to reference values from the TRMM
Precipitation Radar (PR). They were also compared to ground measurements using
two 1◦ × 1◦ dense rain-gauge networks from different climatic zones in West Africa
to assess the influence of rainfall types. At the global scale the MLPs provide
better Probability of Detection than the GSCAT-2 decision tree but tend to have a
higher False Alarm Rate. While no unique solution exists given the strong regional
dependence of the classifiers’ performances, the screen based on the 19, 21 and
85 GHz channels provides the best detection results at the instantaneous scales. As
to accumulated rainfall, the screen that exhibits the lower bias relative to the PR
makes use of the 37 and 85 GHz channels. The evaluation over West Africa using
10 years of TRMM overpasses shows that MLPs are in better agreement with both
the PR and the gauges than GSCAT-2. The MLP trained on the 37 and 85 GHz
channels increases the Probability of Detection by nearly 35% compared to the
former screening over the two studied regions. Better results are obtained in the case
of organized systems. Copyright c© 2013 Royal Meteorological Society
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1. Introduction

From the launch of the first Special Sensor Micro-
wave/Imager (SSM/I) on the Defense Meteorological Satel-
lite Program (DMSP F8), to the launch of the Tropical
Rainfall Measuring Mission (TRMM) in 1997, the algo-
rithms to retrieve rainfall from the measurements of passive
microwave radiometers (PMR) on low Earth orbit have
improved greatly (Stephens and Kummerow, 2007). The
retrieval of a rain intensity from PMR data usually entails
an explicit or implicit preliminary detection step, in which
the algorithm identifies possible rain pixels.

Within the framework of the Megha-Tropiques (MT)
mission that carries a conically scanning radiometer
MADRAS (Microwave Analysis and Detection of Rain and
Atmospheric Structures) with operating frequencies in the
range 18.7–157 GHz, the retrieval of instantaneous rainfall
will be performed by a Bayesian algorithm known as BRAIN
(Bayesian Retrieval Algorithm Including Neural Networks)
(Viltard et al., 2006). BRAIN is a Bayes/Monte-Carlo based
algorithm that retrieves the rain intensity at the surface from
a vector of measured brightness temperatures (TB). To do so,
the algorithm relies on a retrieval database, which contains
near-surface precipitating rates with their associated TB
vector. The construction of the retrieval database is described
in Viltard et al. (2006). Once the retrieval database is built,
BRAIN estimates the most probable rain rate (expected rain
rate) corresponding to a measured TB vector, by computing
a weighted average of the database elements (e.g. L’Ecuyer
and Stephens, 2002). The weights are computed based on
the distance between the input vector and each vector of the
database in the TB space.

Rain retrieval in BRAIN does have an explicit preliminary
step in which the no-rain pixels are identified and are
therefore not processed. Identifying the presence of rain
from PMR data is recognized as a crucial step for rain
retrieval accuracy. Kirstetter et al. (2012) shows that about
30% of the total rain could be missed in BRAIN because of
misclassified pixels. The screening is also meant to eliminate
all ambiguous pixels from the retrieval with backgrounds
similar to rain signatures but that are not actually rain
falling at the surface (e.g. snow-covered ground). This
filtering process will therefore be critical for instantaneous
retrievals but even more so when developing accumulated
rain products.

The difficulty in detecting rain over land surfaces is due
to the high variability of the surface emissivity (ε) within the
field of view (FOV) of the radiometers, that compromises
the discrimination of the atmospheric contribution from the
background in the radiometric signal. Since typical values
of ε over land range from 0.6 to 0.95, the thermal emission
by clouds leads to nearly the same brightness temperature
as the surface, so that the signal from liquid rain is not easily
identifiable. For this reason, most algorithms rely exclusively
on the indirect relationship between surface precipitation
and ice scattering in the upper part of clouds. For rain
retrieval over land, BRAIN only uses the 37 GHz-vertical
and both polarizations of the 85 GHz.

Over the last two decades, several screening methods
have been proposed, among which the most widely known
was proposed by Grody (1991) and is applicable over both
land and ocean surfaces. Most of those methodologies were
developed for SSM/I data and provide a discrimination of
scattering surfaces from the scattering due to precipitation.

Usually, this step is followed by multiple tests on TB
values to eliminate ambiguous situations, such as snow
cover and deserts. However, none of these studies provides
a quantitative evaluation of the impact of the screening
method on rainfall estimation accuracy. The novelty of
this article can be found in the quantitative analysis of the
effects of the use of a new neural screen on the resulting
average surface rain rates. This new rainfall identification
method using artificial neural networks is implemented in
the BRAIN algorithm, allowing us to test its impact on an
already operational algorithm.

The first part of the article consists of a brief review of
screening methodologies, including the one used in BRAIN
described in section 3. The methodology used for the new
detection is presented in section 4. In section 5, the results
obtained with the new neural screen are evaluated on
both a global and a regional scale. BRAIN performances
are evaluated first against the TRMM Precipitation Radar
(PR) and secondly against two sets of rain-gauge data. The
comparison with the PR enables a quasi-global evaluation
of the algorithm outputs, whereas the comparison with the
rain-gauges provides a reliable evaluation over two different
climatic regions in West Africa.

2. Background

As with rainfall retrieval algorithms, most screening
methodologies can be grouped in two categories, either
physical or statistical. The first category is called ‘physical’
in the sense that the possible rain is identified from physical
characteristics of TB values (Grody, 1991; Hollinger, 1991;
Adler et al., 1994; Kniveton et al., 1994; Petty, 1994; Ferraro
et al., 1998, 2000; Bennartz et al., 2002; Greenwald and
Christopher, 2002). Most of the physically based techniques
were initially developed to avoid misinterpretation of
cold surfaces as precipitation, an error which would
lead to systematic bias in accumulated products. Ferraro
et al. (1998) labelled these surfaces as ‘scatterers’ because
their TB decreases with increasing frequency. As such,
deserts, snow cover, semi-arid land or refrozen snow areas
need to be properly identified before the retrieval process
can take place. Surface types can also be classified from
the difference between the Horizontal (H) and Vertical
(V) polarization at a given frequency. Indeed, contrary
to precipitation, most land surfaces exhibit a greater
polarization difference at lower frequencies such as 19 GHz
than at 85 GHz. Information on scattering and polarization
is usually combined to discriminate precipitation over
land surfaces leading to the computation of the so-called
scattering index as demonstrated by Grody (1991). Clear-
sky regions are identified when this index exceeds 5 to
10 K. This scattering index is usually equal to the difference
between the estimated TB (85V) without the scattering
effects of precipitation (estimated from a regression derived
from global clear-sky observations) and the observed TB
(85V). In the case of the TRMM 2A12 version 7 (Gopalan
et al., 2010), the scatterers are identified through a simple
test: (TB(22V)-TB(85V)) >8. These kinds of thresholds are
also used in the Goddard Scattering (GSCAT-2) algorithm
(Adler et al., 1994) that was part of the former version of
the GPROF algorithm version 4 (Kummerow et al., 1996).
It is also important to note that depending on the screening
version, the horizontal polarization can be used instead of
the vertical one. This comes from the use of SSM/I F08 data
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which, starting in January 1989, have an unusable 85 GHz
vertical polarization channel because of excess instrument
noise.

The second category of methods uses a more statistically
based approach. One way to implement this is through
the use of artificial neural networks. In the remote sensing
of precipitation, a number of satellite rainfall algorithms
are based on neural tools (Zhang and Scofield, 1994; Hsu
et al., 1997; Mallet et al., 2002; Tapiador et al., 2004b). A
review of neural networks applications in satellite rainfall
estimation can be found in Tapiador et al. (2004a). In
spite of the relative common use of neural networks for
modelling inverse problems in rainfall estimation, their use
for classification issues and especially the identification of
possible rain from satellite data is less frequent. Grecu and
Anagnostou (2001) and Moreau et al. (2002) proved the
utility of neural networks for this particular purpose. As can
be seen in the literature, the most common architecture of
neural network used in the field of remote sensing is the
multilayer perceptron. In this study, a multilayer perceptron
is also used, but a radically different approach is presented.
Indeed, we assume that the TBs without further modification
or conversion are sufficient to enable rain identification.
Furthermore, in the framework of instantaneous rainfall
estimation, attention is given to the possible impact of the
screen misclassification on the retrieved precipitation rate.

3. BRAIN screen

BRAIN is an instantaneous rainfall retrieval algorithm with
currently running versions for various radiometers such
as MADRAS, TRRM Microwave Imager (TMI), SSM/I,
SSMI/S (Sounder) and the Advanced Microwave Scanning
Radiometer for the Earth Observing System (AMSR-E).
Since rain retrieval from brightness temperatures is a very
ill-posed problem, the algorithm is based on a simplified
Bayesian scheme. The ensemble of possible solutions
is stored in a retrieval database where each element
consists of a vector of brightness temperatures with its
corresponding near-surface rain rate. The retrieval is simply
the computation of the weighted average of the elements
found in the database. The weights are computed as a
function of the distance between the measured vector of
TB and each of the elements of the database. Each weight
also takes into account the respective uncertainties of the
database and of the measured vector itself (a thorough
description can be found in Viltard et al. (2006), L’Ecuyer
and Stephens (2002) and Kummerow et al. (2001)). In the
retrieval process, each pixel of the radiometer is treated
independently from the others. Before the retrieval itself,
each pixel goes through a two-step process. First, its surface
type is determined as ocean, land or coast. Second, its rainy
or non-rainy quality is defined since rain occurrence is
comparatively rare. All the pixels identified by the screen
as possibly rainy are further processed to provide a surface
rain rate estimate, while the others are set to 0 mm h−1. The
current screening methodology used in BRAIN is adapted
from the one proposed by Adler et al. (1994) (GSCAT:
Goddard SCATtering algorithm) that was improved in
the GSCAT version 2. GSCAT was created using SSM/I
data and is suitable for other radiometers, provided that
the differences in frequency and geometry are not so
large as to affect significantly the brightness temperature
ranges. Studies further show that better performance is

achieved with the TMI measurements because of the reduced
inhomogeneity encountered in the smaller pixels of the
TRMM radiometer (Kummerow et al., 2001). The core of
GSCAT is implemented as a decision tree. An overview of
the derived procedure used in BRAIN is given in Figure 1.
The first threshold on TB 85H used here to filter no-rain
pixels is set to 257 K, like in GSCAT. Unlike the screen
developed by Grody (1991), here some pixels can be labelled
as ‘indeterminate’. Some weaknesses of this feature have
been noted by Kummerow et al. (2001), showing that this
procedure has the tendency to flag too many pixels as
‘indeterminate’ in the vicinity of rain areas.

The motivation to develop a new screen was raised by the
study by Kirstetter et al. (2012) dealing with the validation
and the error estimation of BRAIN estimates. A rainfall
comparison over West Africa between rain-gauges, PR
and BRAIN data was performed using 10 years of data.
Results showed that BRAIN in its current version misses
about 25% of rain in volume and 55% of rain occurrences.
Although there is no direct evidence that the screen is entirely
responsible for these discrepancies, it leaves no doubt that
the BRAIN detection methodology can be improved, with a
corresponding improvement in these scores.

4. Data characteristics and methodology

In this study, data from the TRMM mission were used
to illustrate the potential of neural network techniques for
identifying rain situations. Pixels can exist under three states:
rainy, cloudy and clear. When no cloud is present within the
FOV, the pixels are considered as clear. Cloudy pixels will
have a certain amount of clouds, either warm or cold, but
no rain on the ground, or at any level of the profile. Rain
pixels are found when at least one level has precipitating
particles. With this classification in mind, it is obvious that
the so-called no-rain pixels can be either clear or cloudy. The
reference for identifying rain and no-rain pixels here is the
PR, which has a minimum theoretical detection threshold
of approximately 17 dBZ or 0.7 mm h−1. The PR profiles
are processed so that each of them can be used in a radiative
transfer model as in Viltard et al. (2000). The simulated
TBs for each individual PR profile are convolved with the
antenna pattern of each channel in order to provide TB at
the proper frequency and spatial resolution.

An artificial neural network (NN) is trained to reproduce
the behaviour of samples that make up the training database.
The quality of those samples is therefore essential for the
performance of the NN. Since BRAIN is meant to be used
with the whole range of PMR that are flying presently
or to be flown soon, the retrieval database is made of
simulated brightness temperatures where the specifics of
each instrument are accounted for. In order to develop
such a screen for the different PMR, the learning phase is
performed on the same dataset that was used to build the
retrieval database, augmented by adding clear and cloudy
cases. The simulation of TB is known to be affected by
substantial errors due to incomplete or improper description
of both the atmosphere and the surface. These errors
can lead to systematic misclassification in a screening
application. To ensure the best performance of the network,
a calibration procedure is applied. This procedure is based
on the approach proposed by Aires et al. (2010) and uses
a multilayer perceptron (MLP), which in this case contains
nine neurons in the input layer (i.e. the nine measured TBs
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Figure 1. Current screening methodology over land surfaces for BRAIN algorithm.

from the TMI), ten neurons in the hidden layer and nine
neurons in the output layer (i.e. the nine calibrated TBs). To
maximize cross-platform consistency, the same calibration
procedure will eventually be used for all radiometers.

The screening database is built from 10 years of randomly
selected radiances from the nine TMI channels covering
the whole tropical belt, with the rain/no-rain flag from
the PR (Iguchi et al., 2000). The PR pixels are averaged to
the spatial resolution of the 37 GHz pixels of TMI (see
Viltard et al. (2006) for more details). The pixels belong to
the rain class in the sense of PR: there is signal at least at
one level of the profile, which means at least 17 dBZ of
backscattered power or about 0.7 mm h−1 of precipitation.
This database contains about 60 000 points with 30 000
points for each class (rain/no-rain) to avoid favouring the
naturally more-frequent no-rain cases within the screening
procedure.

Figure 2 illustrates the TBs used in training the screen.
Each channel is shown as a histogram of its corresponding
brightness temperatures, either for rain or no-rain pixels of
the database. As can be seen, none of the TB vectors from the
dataset provides accurate separation between rain and no-
rain pixels. Therefore, several associations of TB as network
inputs were tested, resulting in six different combinations.

The screening MLP architecture consists of three
successive layers. The number of units in the first
layer depends on the variables retained for training. For
classification, several configurations exist for the output
layer. This layer contains only one neuron, and the class
separation line is delimited by applying a threshold on the
output. The optimal number of hidden neurons is obtained

using a heuristic approach. The selection of both the NN
architecture and its parameters remains crucial. The risk
of using a non-optimized network is that over-training
problems and spurious parametrization can occur. To avoid
those, the learning phase is followed by a test on a so-called
training dataset and the robustness of the NN is further
evaluated over a validation dataset. For all configurations of
the input layer (i.e. number of TBs retained for learning),
the optimal architecture is achieved when using 15 neurons
in the hidden layer.

The network outputs are evaluated in different ways.
First, the discrimination quality of a given MLP is captured
through Receiver Operating Characteristics (ROC) curves
and the calculation of the area under these curves (AUC).
These tests are usually used to identify the best classifier
(Bradley, 1997). Second, ROC curves represent an efficient
way of visualizing the performance of a classifier in order
to set a decision threshold. Indeed, the MLP provides
a continuous output ranging from 0 to 1 that can be
considered as a probability. The extreme values 0 and 1
correspond respectively to no-rain and rain labels. The ROC
curve analysis enables the computation of a threshold that
does not favour either of the two classes.

Once the optimal output threshold is determined, the
percentage of agreement between the rain label from the
NN (NNflag) and the PR (PRflag) is computed. Hence,
pixel by pixel, the labels of the pixels provided by the NN
and the PR are compared and gathered in four categories
that are determined by the confusion matrix presented in
Table 1. Those four categories are the cases of Hits, False
Alarms (FA), Wrong Detections (WD) and Good Rejections
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Figure 2. Histograms of TB (training database) for rainy/non-rainy discrimination.

Table 1. Confusion matrix and categories of classified pixel. Rain=R,
No-rain=NR.

NNflag PRflag

R NR

R Hits False Alarms (FA)
NR Wrong Detections (WD) Good Rejections (GR)

(GR). A case of Hits occurs when both NN and PR identify
a pixel as rainy, whereas a GR occurs when both of them
identify a pixel as non-rainy. An FA corresponds to cases
where the NN identifies a pixel as rainy contrary to the
PR. A WD corresponds to the opposite situation. From
the confusion matrix, several performance metrics can be
calculated, particularly the sensitivity and specificity. In the
literature, those indices are commonly mentioned as Hit
rate and False Alarm rate (which will be explained in detail
in the following section). Their computation is necessary for
creating ROC curves. Indeed, each point of an ROC curve
represents a sensitivity/specificity pair corresponding to a

particular decision threshold (i.e. applied to the output of
the considered classifier, here NN).

In the specific issue of rainfall discrimination, Sensitivity
(Se) and Specificity (Sp) respectively represent the ability of
the network to detect rain pixels from no-rain ones and vice
versa. Se and Sp are expressed as:

Se = Hits

Hits + FA

Sp = GR

GR + WD
.

Then sensitivity against 1-specificity is plotted on Figure 3.
A classifier providing perfect discrimination (i.e. no overlap
in the two classes) has an ROC plot that passes through the
upper left corner where both sensitivity and specificity equal
1. The theoretical plot for a test with no discrimination
is a 45◦ diagonal line from the lower left corner to the
upper right corner. Qualitatively, the closer the plot is to
the upper left corner, the higher the overall accuracy of
the classifier. In Figure 3 the ROC curves obtained for six
different classifiers are displayed. It can be noted that, with
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Figure 3. ROC curves obtained on calibrated TB.

Table 2. AUC for all MLP.

Variables (TB) 10.65–85.5 GHz 19.4–21-85 GHz 21.3–85 GHz 37–85.5 GHz 85.5 GHz All TB

AUC 0.9047 0.9255 0.9209 0.9283 0.8020 0.9208

the exception of the MLP that was trained on the two 85 GHz
and which exhibits an ROC curve below all the others, none
of the classifiers stands out. Nevertheless, the ROC curve
corresponding to the MLP that was trained on both 37 and
85 GHz frequencies seems to be lying slightly above and to
the left of the other curves. To consolidate this qualitative
analysis, the areas under all the ROC curves are computed.
Results are shown in Table 2. As previously mentioned,
the AUC is the most common global technique to quantify
the accuracy of a classifier by a single number. Values of
AUC usually range from 0.5 (meaning there is no apparent
difference between the distributions of the two classes) to
1 (meaning that there is a perfect separation between the
two classes). It can be seen in Table 2 that the model that
is slightly ahead, as far as the AUC is concerned, is the one
obtained with the 37 and 85 GHz TB (noted hereafter as
MLP 37–85). It is worth noting that the channels which
appear to be the best descriptors are the ones most often
used in literature (see section 2). Several factors can impact
the choice of those descriptors. At 37 and 85 GHz, scattering
prevails and those channels are generally used to perform
retrieval over land surfaces. In addition, the FOV for those
channels is smaller than for the others, implying a better
spatial resolution, which can help the detection of smaller
convective cells and sharper gradients. Lower frequencies
are often used in screening procedures. Indeed, the 21 GHz
channel provides information on water vapour saturation
in the neighbouring atmosphere and ice surfaces on the
ground (Grody, 1991), while the 19 GHz channel provides
information on polarization over desert areas.

To confirm the qualitative and quantitative analysis given
by ROC plots and AUC, the total percentage of accurate
classification is calculated at a fixed point and results are
listed in Table 3. This point corresponds to the optimal
threshold for each MLP that is evaluated through the
corresponding ROC curve. In the present study, the optimal
threshold is found to give the best compromise between
specificity and sensitivity, which means that it spatially
corresponds to the point closest to the top left corner on
Figure 3. It is noticeable in Table 3 that the model providing
the higher percentage of correct classification is the MLP
37–85 GHz.

The final step of the evaluation of our NN models is
described in the following section. The MLP 37–85 was
implemented in the BRAIN algorithm and the impact of this
new screening methodology on the resulting estimates of
rain rate was quantified and compared to the former decision
tree at different spatial scales and over several TRMM orbits.

5. Results analysis

5.1. Global evaluation

BRAIN can be used either for a real-time application or
to generate accumulated products. Therefore, depending
upon the targeted application, the evaluation criteria might
be different. Two levels of validation are considered for
this study. First, a contingency table analysis is presented
in Table 4. These results are especially relevant for
instantaneous estimations where most applications require

Table 3. Total accuracy (%) for all MLP.

Variables (TB) 10.65–85.5 GHz 19.4–21-85 GHz 21.3–85 GHz 37–85.5 GHz 85.5 GHz All TB

Total accuracy 83.9 91 90 91.5 82 89.2
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Table 4. Scores (in %) for Decision tree (former screen) and MLP 37–85
above the sampled region.

Screen Decision MLP MLP MLP
tree 2185 192185 3785

Tropical POD 22.6% 63.8% 57.2% 67.5%
belt FAR 37.5% 48.8% 40.6% 73%

WDT 68% 22.4% 31% 11.5%

Table 5. Total mean bias for each screen.

Decision MLP MLP MLP
tree 21–85 19-21-85 37–85

Relative bias (%) 121 65.36 82.6 56.8

a good description of the rainfall field structure and the
spatial distribution of intensities. Second, mean values of
the surface rainfall for each pixel category are computed. This
gives a good indication of the possible bias that the screen
would introduce in accumulated products. For instance, we
assume that a high number of False Alarms corresponding
to light rainfall intensities is less critical for the algorithm
performance than a few cases of wrong detection of high-
intensity rain.

Some classical scores to estimate the efficiency of a
screen and its performance in terms of rain occurrence
are calculated, namely:

• The Probability of Detection (POD)

POD = Hits

Hits + WD

• The False Alarm Rate (FAR)

FAR = FA

Hits + FA

• The total Wrong Detections percentage (WDT)

WDT = WD

Hits + FA + WD
.

In an ideal situation, the POD would have a maximum
of 1 and the FAR and WDT would equal 0. Those scores
are generated for each MLP and compared to the former
screening methodology.

At first, the various MLPs are compared to the existing
decision tree on a global scale. As previously mentioned,
some surfaces can lead to a misinterpretation by the
screening procedure, such as snow cover. Thus, the impact
of these surfaces on rainfall retrieval must be evaluated.

Fifty TRMM orbits were randomly selected and the
BRAIN retrieval was performed over the entire tropical
belt to produce the results shown in Table 5. Table 4 shows
the performance of the screens in terms of occurrence. As
expected, the decision tree exhibits the lowest POD and FAR
but the greatest WDT . All MLPs that were developed detect
many more rain pixels, in agreement with the PR, than
the former screen. The FAR values are quite different from
one MLP to another with the lowest occurrences of False
Alarms reached by the MLP 19-21-85. The highest POD

value is reached for the MLP 37–85 and is equal to 67.5%.
This screen also provides the smallest number of wrong
detections; however, this comes with a substantial number
of False Alarms (73%).

Relative mean bias, obtained by considering pixels of all
status (Hits, False Alarms and Wrong Detections) for each
screen, is listed in Table 5. It appears from those values
that the more restrictive the screen, the more significant
the bias. This effect must be connected to the Bayesian
estimation. Since this technique set up in BRAIN is a
weighted average of its retrieval database elements, extremes
are eroded, leading to overestimation of the light intensities
and underestimation of the heavy ones. Hence, taking into
account false alarms, the greater the number of detected
low-rain pixels, the closer the mean value of the retrieved
distribution will be to the lower intensities. Since BRAIN is
globally overestimating the rain, the total bias with respect
to PR will be reduced.

An important consideration in addressing rainfall
detection in retrieval is the choice of the screen, which
must be adapted to fit the envisioned application. As far as
climatological applications are concerned, the first selection
criterion is the relative bias, which must be minimized. As
can be seen from results shown in Table 5, the MLP 37–85
appears to be the best screen. It provides a relative bias equal
to 56.8%, which is lower than the one obtained when using
the decision tree (121%). For instantaneous estimation, the
mask that provides a relatively good POD while minimizing
the FAR is the best. The results shown in Table 4 prove that
only the MLP 19-21-85 exhibits a FAR which is close to the
one provided by the decision tree. This MLP also exhibits a
POD that is improved by nearly 35% from the POD of the
decision tree.

Figure 4(b) presents the map obtained from rainfall mean
values on a 1◦ × 1◦ grid for August 2010 estimated by
BRAIN using the MLP 37–85. The same map, but using
the data from the PR, is presented in Figure 4(a). It can
be seen that BRAIN and the PR are in good agreement
in terms of rain areas. However, the map obtained from
BRAIN data exhibits several regions of low surface rain
rate corresponding to some false alarm cases. Clearly, some
mountains with possible snow cover are not properly filtered
out by the MLP. Those corresponding pixels, when kept in
the retrieval process, can lead to high monthly-average
rainfall intensities. Those cases are particularly visible above
the Himalayas and the Andes. Given that it is extremely
difficult to estimate rainfall over those regions, they are
eliminated through a geographic screen that enables the
deletion of surfaces exceeding 3500 m in altitude, although
this solution is not entirely satisfactory. The map obtained
when using this procedure is presented in Figure 4(c). Most
of the ambiguous surfaces have been properly eliminated
but a few pixels over the Andes persist. This preliminary
solution could be improved, for example by applying a
dynamic altitude threshold instead of a fixed one. The
altitude of 3500 m seems to be an acceptable compromise
between the deletion of false alarms and the preservation of
hits over mountainous areas.

Some other regions with false alarms that apparently
do not correspond to ambiguous surfaces are visible in
Figure 4(b). It can be seen that South Africa and Australia
present some localized regions of false alarms but with rather
low intensities. The cause of this phenomenon is hard to
determine at this point given the diversity of possible sources
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Figure 4. (a) Mean surface rain rates for August 2010, (b) from the PR, (c) from BRAIN-TMI using MLP 37–85, same as (b) but when using a geographic
screen (above 3500 m of altitude filtered out).

for those false alarms. It is likely that some peculiar surface
emissivity causes the MLP to fail in these regions.

5.2. Regional evaluation: Niger and Benin sites

The performances of BRAIN for rain detection were
evaluated over West Africa (6◦W/6◦E/15◦N/5◦S) using both
PR and ground data. The dataset from the PR used here
consists of more than 1700 overpasses of TRMM between
years 1998 and 2010.

The interest in this region has arisen from two major
factors:

First, the recent study by Kirstetter et al. (2012) proposed
an error model for BRAIN using data from rain-gauges
that were available for this particular region and period. To
allow the comparison of rainfall, rain-gauges were treated
with kriging techniques in order to reach the same spatial

resolution as BRAIN-TMI (12.5 km). Similarly the PR pixels
(2A25 v6: Iguchi et al., 2000) within a 6 km radius of
each TMI pixel were averaged together. Some uncertainty
arises from this procedure because of the differences in scan
geometry and the co-location errors between the various
instruments. The practical minimum detectable rain rate by
the PR is fixed by its sensitivity, which is about 0.7 mm
h−1 at its raw spatial resolution that is reduced to 0.3 mm
h−1 when averaged. Kirstetter et al. (2012) show that when
compared to rain-gauges, PR is a good reference for rain
presence (few false alarms). However, PR will eventually
miss some very light rain (wrong detections). This light rain
from rain-gauges is not considered as very robust (kriging
errors are larger than the estimated rain rate).

Second, the focus on the Niger and Benin regions enables
the comparison of two different climatic regimes and
therefore different features of precipitation. Over Niger,

Copyright c© 2013 Royal Meteorological Society Q. J. R. Meteorol. Soc. 139: 912–922 (2013)



920 S. Kacimi et al.

Table 6. Scores (in %) for Decision tree (former screen) and MLP 37–85
above the sampled region.

Screen Decision tree MLP
37–85

West Africa POD 39.5 74
FAR 3.7 24.3
WDT 59.6 21

NIGER POD 35.1 82.5
FAR 1.8 25.2
WDT 64.5 13.7

BENIN POD 38.1 75.1
FAR 4.1 24.4
WDT 60.8 20

convection is usually organized with strong updraughts
creating many ice crystals with an easily identified scattering
signal. Precipitation characteristics in Benin are more
sensitive to local orography in the north, generating
disorganized convection with cells, which might not be
easy to capture within the FOV of the TMI channels. In
addition, stratiform precipitation without a very defined
scattering signature is more often encountered.

The values for POD, FAR and WDT compared to the
PR obtained with the MLP 37–85 (hereafter referred to as
the MLP) and the former screen (GSCAT decision tree) are
presented in Table 6. In general, the decision tree, which is
by nature restrictive, exhibits low values of POD and FAR
unlike the MLP, whose POD reaches 74% for the whole
sample. It is not surprising due to the fact that the decision
tree was created mainly to avoid false alarms related to high
emissivity or polarized backgrounds. The FAR and WDT are
respectively increased and decreased when using the MLP
since the NN screen detects many more rain pixels than
the decision tree. The drawback of using a less stringent
screen is that it naturally causes more false alarms. This can
be explained not only by the nature of the discrimination
between rain and no-rain from the radiometric signal in
general, but also by the sensitivity of the PR. Given that the
rain/no-rain limit is not clearly identified by any descriptor
(cf. Figure 2), raising the occurrences of hits between PR
and the NN models leads to an increase of the FAR.

Looking at the regional variability, the MLP appears to
perform better in Niger than in Benin. This, as was previously
mentioned, can be related to the more organized nature of
convection in Niger, creating more intense TB depressions
at 37 and 85 GHz. This regional sensitivity is not visible when
using the decision tree. This aspect could be related to the
use of 37 and 85 GHz channels that, as already mentioned,
offer smaller pixels than the lower-frequency channels used
within the tree.

This analysis of occurrences in Table 6 was further
evaluated in terms of mean values of surface rainfall, and
the results are presented in Table 7. Contrary to the decision
tree, the values of mean surface rainfall for hits and total
pixels are lower when using the MLP. These values highlight
the fact that the MLP detects significantly more rainfall of
light intensities than the decision tree. The WDT are of the
same order of magnitude for both screens, but it is noticeable
that the values obtained with the MLP are slightly lower in
terms of averaged rain intensity. Another unexpected result
can be found in the mean values of false alarms that are
higher for the decision tree than for the MLP. Owing to the
fact that the MLP gives significantly more false alarms than

Table 7. Mean values (mm.h−1) of surface categories for total region,
Niger and Benin.

Screen Decision MLP
tree 37–85

West Africa Hits 5.2 3.9
Wrong Detections(PR) 1.1 0.8
False Alarms 2.8 2.1
(BRAIN-TMI)
Total 5.1 3.5

NIGER Hits 7.8 4.8
Wrong Detections(PR) 1.1 0.6
False Alarms 5.6 2.2
(BRAIN-TMI)
Total 7.8 4.2

BENIN Hits 4.3 3.6
Wrong Detections(PR) 1.2 0.7
False Alarms 2.8 2.1
(BRAIN-TMI)
Total 4.2 3.3

Table 8. Contingency table (%) for TMI over Niger and Benin areas.

Screen Decision MLP
tree 37–85

Niger Hits 21 42
WD (GV) 30 9
False Alarms (BRAIN-TMI) 0 8
Correct rejection 49 41

Benin Hits 18 28
WD (GV) 28 18
False Alarms (BRAIN-TMI) 1 6
Correct rejection 53 49

Results are provided only for robust GV. Adapted from Kirstetter
et al. (2012).

the decision tree, its FA mean value can be biased by the
high amount of light-intensity rainfall that ends up in this
category.

The design of the decision tree allows for different
natures of false alarms. Indeed, the first threshold applied
to the 85 GHz horizontal polarization (cf. Figure 1) is
quite restrictive and strongly defines the no-rain pixel
category. For that reason, this threshold limits the number
of false alarms that are closely related to the ambiguous
border between rain and no-rain situations, creating light-
intensity false alarms. In the decision tree, the following
tests identify the presence of rain in the pixels exhibiting
a TB 85 GHz H ≤ 257 K. Hence a false alarm occurs
when a pixel passes through all the tests to eventually
be identified as possible rain. By nature, the decision
tree is therefore more susceptible to false alarms resulting
from the misinterpretation of the background surface that
can provide pixels of high-intensity rainfall. These pixels
probably explain the higher mean rainfall value observed for
false alarms when using the decision tree.

Finally, comparisons between BRAIN-TMI and rain-
gauges (Ground Validation, GV) were made, using the
same data over the same region. Results are listed in Table 8
and Table 9. It can be noted that in the contingency table
(Table 8), occurrences of false alarms using the decision
tree disappear. The number of hits doubles over Niger and
increases by 10% over Benin when using the MLP. Values
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Table 9. Hits and misses (Wrong Detections) (%) of BRAIN-TMI relative
to GV rainfall with discarded rain volume by BRAIN-TMI due to misses

relative to GV.

Screen Decision tree MLP
37–85

Niger Hits 41 82
WD 59 18
Discarded rain volume 32 10

Benin Hits 39 61
WD 61 39
Discarded rain volume 52 36

Adapted from Kirstetter et al. (2012).

of WDT are considerably improved over Niger while they
decrease by 18% over Benin.

In Table 9, only the cases of hits and wrong
detections are taken into account. It is obvious that the
sensitivity–specificity ratio is inverted for the two screens,
the MLP being much more sensitive over both regions. As
far as the discarded rain volume is concerned, the MLP
enables the recovery of a substantial amount of rain, but the
volume of missing rain remains more significant over Benin
for both screens.

6. Conclusion

A series of masks based on artificial neural networks of the
multilayer perceptron type were developed and tested to
discriminate rain/no-rain regimes from passive microwave
radiometers data over land. The training database was made
of a series of profiles from the TRMM PR associated with
their respective simulated brightness temperatures. Various
combinations of input channels from TMI data were used,
and provided a much better detection of the rain/no-rain
boundaries than the original decision tree based on GSCAT-
2. The use of ROC curves and their area helped to select the
best combination of channels, which was then implemented
in the BRAIN retrieval algorithm.

First, the performances of the new masks over the
entire tropical region were evaluated on a number of
randomly selected TRMM orbits, showing a strong regional
dependence with local problems that need to be addressed
separately. Generally, the Probability Of Detection is
substantially improved but at the cost of a degraded False
Alarm Rate while the wrong detections are kept under
control. This shows the intrinsic difficulty in distinguishing
the rain from the no-rain regions over a continental
background due to the high variability of the surface
emissivity.

Second, 10 years of BRAIN retrieval using the TRMM TMI
data were compared to both PR data and rain-gauge data
over two sites in Benin in Niger. This regional comparison
showed that the performance of the mask is indeed affected
by local conditions, although the MLP relying on the 37 and
85 GHz generally performed better than the older GSCAT-
2 mask. The analysis also confirmed that the mask does
indeed contribute substantially to the bias observed between
the rain-gauges’ data and the retrieval by controlling the
number of light-rain pixels.

Depending on the rain retrieval algorithm application,
features and performances of one or the other configuration
of the multilayer perceptron must be considered. The use

of a combination of 37 and 85 GHz provides the lowest
bias relative to the PR and therefore appears more adequate
for climatological applications. On the contrary, the more
complete combination of 19, 21 and 85 GHz exhibits a False
Alarm Rate equivalent to the one obtained when using the
former GSCAT-2 screen and appears better suited for real-
time applications. The next step will be to develop a series
of specialized networks to account for regional specifics.
This raises the difficult task of avoiding discontinuities when
switching from one mask to the other in adjacent regions.
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